READING LABELS PART 2. – NUTRIENTBALANCE IN SUPPLEMENTS – BY DR.CORINNE HILLS

Does It Have the Right Stuff and Is the Balance Right?

When reading labels, it is important to consider all aspects of the nutrient composition, including, completeness, balance, form, and dose. Then you can compare the composition to the nutrient requirements of your horse.

Completeness

Metabolism is quite complex, requiring a broad range of essential nutrients to function optimally. You can’t just feed two or three nutrients and hope to support performance, recovery, health, and metabolism. A lot of one nutrient doesn’t make up for deficiencies in another. If you ran out of food in your house and tried to just live on a big bag of salt, you wouldn’t last long.

Balance

The balance between nutrients is equally important. Some nutrients are required for the uptake and function of other nutrients. (These supportive and cooperative nutrients are called co-factors.) Too much or too little of one nutrient may result in deficiencies or toxicities of other nutrients. Imbalances, therefore, can adversely affect health, performance, and recovery. At a minimum, imbalances in a feed or supplement can render a product ineffective.

For instance, vitamin C is required for the absorption of iron from the gut. Without vitamin C, iron passes straight through the gut and out in the faeces. Vitamin E, on the other hand, has a negative interaction with iron. It binds with iron and reduces its absorption, causing much of it to be wasted. So, in order for horses to use dietary iron effectively, it must be administered with vitamin C and without vitamin E. Iron balance is also closely related to Zinc, Manganese, Cobalt, and Copper.

Common Feed Ratios

NUTRIENTSRATIO
Ca:P1-2:1
Zn:Mn0.7-1.1
Zn:Cu3-4:1
Fe:Cu4:1

B vitamins are known to work better when administered in optimal balance with each other. They act in concert in many metabolic pathways important in energy production, red blood cell production, coat and skin condition, nerve cell function, and appetite. Giving a bigger dose of one B vitamin may not produce improvements in health or performance if the entire range of B vitamins is not supplied in optimal balance.

Amino acids are another good example of how nutrient balance is important. That is a topic I will discuss further in READING LABELS PART 4 – about evaluating feeds, but in the meanwhile, read the article written by Dr. J. Stewart that we posted on our blog about top-line. In that article, Jenny explains how the balance of amino acids in a feed is as important as the amount of protein. Imbalances in amino acids limit the amount of protein in a feed that is usable in the horse to produce proteins and muscle cells, and the wasted amino acids, that can’t be used for protein synthesis, create a load on kidneys, elevate body temperature, and elevate heart rates.

Bioavailability

Bioavailability refers to how absorbable and usable nutrients are. While this is partly related to the composition and balance of nutrients in a product, the term is most frequently applied to the form each nutrient is provided in.

Some forms are more easily absorbed and used than others. The trace element Chromium, for example, exists in several different forms. The form of chromium found in a chrome bumper on a car is not very digestible at all, but the form incorporated into yeasts is very easily absorbed and then used by cells. Minerals including Calcium, Magnesium, Iron, Cobalt, Copper, Zinc, Selenium, and Manganese can all be provided in a variety of forms, each of which have differences in their bioavailability. In general, inorganic forms of nutrients are less well used than organic forms, though that is not always a reliable rule. Zinc Oxide is one of the most bioavailable forms of Zinc, whereas Zinc Chelate forms a big molecule that remains quite inert. In most cases, though, minerals provided as gluconates, lactates, and amino acid or protein complexes are well used.

When reading labels, you should note whether the amount of the ingredient or the amount of the active molecule is listed. For instance, Iron Bioplex (iron is bound to amino acids or protein) contains only about 10% iron. If a label says a product contains 400mg of iron per dose, that would mean that a dose contains about 4000mg of Iron Bioplex yielding 400mg of very well absorbed and used iron. If the label says a product contains 400mg of Iron Bioplex per dose, then it really only has 40mg of iron. Make sure that you read those details carefully when reading labels and comparing products.

So that’s part 2 done!

To recap Reading Labels – Parts 1 and 2 on Supplements

From Part 1: If labels are easy to understand so that you can tell, at a glance, what you are giving your horse, then the manufacturer is probably proud of their formulation and believe it will stand up to scrutiny. If you have to perform too many calculations to figure out what you are giving, there is a fair chance that the formulation isn’t great. In any case, take the time to do the math and make sure you are comparing apples before picking the cheapest or prettiest product on the shelf.

From Part 2: When reading labels, it is important to consider all aspects of the nutrient composition, including balance, form, and dose, in relation to the nutrient requirements of your horse.

Make sure you read the third instalment of this Reading Labels Blog Reading Labels Part 3 – Product Quality Management. This looks at the quality of ingredients and manufacture.

READING LABELS PART 1. – EQUINE NUTRITIONAL SUPPLEMENTS; COMPARING APPLES WITH APPLES? – BY DR. CORINNE HILLS

Are You Comparing Apples with Apples?

(After working on this for more than an hour and barely scratching the surface, I suddenly realized that this will end up a very long (and boring) blog entry, indeed, so maybe I’ll try to do this in a series of smaller bite-sized chunks. For now, I’m going to start with supplements. I think they will be easier to sort out. If you want to know more about feeds, keep checking back. I’ll eventually finish this…I hope.)

With the tremendous range of feeds and supplements available, how do you even begin to select the right ones for the horses in your stable?

Do you mostly rely on testimonials from friends, feed merchants, or sales reps from the feed/supplement companies themselves? If so, you are not alone. The most common questions I am asked, by the horsemen I meet, from all around the world, relate to comparing feeds or feed supplements. I get a lot of, “hey doc, a rep from a supplement/feed company came the other day and told me about one of their products. They said it was the best ever… but they all say that. What do you think of it? Should I feed it to my horses?”

If you have ever wanted to ask those questions, read on. I’ll try to give you some tools to sort out the wheat from the chaff. Just like the horsemen who ask me about new products they have come across, I can’t always answer those questions immediately. I have to follow a process to objectively evaluate them. I’ll get to that next.

To begin with, so you feel better about your state of confusion when looking at supplements, here is my experience with the same thing. (…and keep in mind, I am a veterinarian, and I studied nutrition in university before starting veterinary school.)

Back in 1999-2000 or so, I started looking at oral pastes and powders as a practical, economical alternative to the more invasive and expensive pre-race treatments I used to give my patients.

(My “loaded amino acid jug” was a Duphalyte or Amino Plus with 30cc’s CaCo Copper, 10cc’s Hemo 15, and 10cc Hippiron, with or without vitamin B12 and vitamin C, given iv along with folic acid given im. Some of my clients liked to have their horses tubed with electrolytes and given Co-Forta injections instead).

In order to find one, or a couple of pastes in combination, that I could recommend to my clients, I looked at lots of supplements…practically all that were available in 2000, in fact. I found a huge number of products listing different combinations of nutrients that were:

  • included in different forms (For example, Calcium could be provided as Calcium carbonate, Tri-calcium phosphate, or Calcium gluconate), and
  • quantified with different units of measure (mg/kg, %, ppm, to name only a few).
  • Then, they were to be given in different doses.

The most confusing paste I found listed contents in terms of parts per million (ppm), percentages, and mg/kg. Then, the syringe was in pounds and the recommended dose in ounces. OMG!!! Clear as mud!!! What I was beginning to wonder, was that if some companies don’t actually want you to know how much or little of each nutrient is in their product. Standing in the feed store, it was nearly impossible to do all of the mental gymnastics required to evaluate and compare the products available. So, I did what you must do if you want to fairly compare apples to apples rather than apples to oranges.

I made a list of label information and recommended feeding rates.

Then, before I could really compare supplements, I had to go home with my lists of label information, sit down with a calculator or spreadsheet (…and a wine…or a latte…), look up conversion factors, and look up nutrient requirements.

Here is a link to my basic spread sheet that you are welcome to copy rather than typing all the nutrients into your own.

SPREADSHEET

(If you just fill in the quantities and units as well as the dosage found on the label, the spread sheet should calculate the contents per dose for you. If you come across units not covered in my spread sheet, please read on and try and understand how to convert units yourself. If the math is just too off-putting for you, contact us at Pro-Dosa, and we will be happy to do the conversions for you and add them to my spread sheet for everyone else’s benefit.)

Enter or write down the contents as listed on the label, including the units.

Are the quantities listed in micrograms (mcg or ug), milligrams (mg), grams (g), kilograms (kg), parts per million (ppm), percentages (%), international units (iu), or 1000-international units (kiu or IU)? Are those quantities listed per kg, pound,or dose of the product in question?

Here’s an example.

In this example, Arginine is listed as 0.31%, Iron is 3500 ppm, VitaminB12 is 1013mcg/lb, and Thiamine is 992mg/lb. (…No, it doesn’t make much sense to me either…Yes, stop now and go get that glass of wine!) Here’s where we will start to make some sense of this stuff.

You will need to convert all the units to milligrams per gram (mg/g) or whatever units you understand. (In NZ, we use the metric system.) I generally convert everything to mg/g, as I have entered the nutrient requirements into my spread sheet in milligrams (mg) (more on that later), and the dose of product you will give your horse will mostly be measured in grams (g). You can use the conversion factors here or google each nutrient.

A percentage, as you know, is a number out of 100, so a percentage is the same as an amount in milligrams per 100 milligrams or the amount in grams per 100 grams or the amount in peaches per 100 peaches. Make sense? Then, there are 1000 milligrams (mg) per gram (g), so we have to multiply the amount per 100 mg by 10 to get the amount per gram.

Conversion Factor For Percentages to mg/g
% X 10 = mg/g

OK, in this example, Arginine is listed as 0.31% so that means there is 0.31mg per 100 mg. We multiply this by 10 to get 3.1mg of Arginine per gram of paste.

Parts per million (ppm), using the peach analogy, is the amount in peaches per 1 million peaches. So that is the same as the amount in micrograms per gram. There are 1000 micrograms (mcg) per 1 milligram, and there are 1000 milligrams in a gram, so there are 1 million micrograms in a gram. Anything listed in ppm, therefore, can automatically written instead as mcg/g. We, of course, are working towards having everything in mg/g, so divide the amount in ppm by 1000 to get the amount in mg/g.

In this example, the Iron is listed as 3500ppm. That’s the same as 3500 mcg/g. If we divide by 1000 to get mg/g, there is suddenly only 3.5mg/g. That doesn’t sound like nearly as much.

Conversion Factor for Parts Per Million (ppm) to mg/g
ppm divided by 1000 = mg/g

Now, on to the vitamins in this example…

As we learned before, there are 1000 micrograms (mcg) per 1 milligram. Divide the amount in micrograms by 1000 to convert to mg. In this example, Vitamin B12 is actually 1.013mg/lb. Easy!

Conversion Factor for micrograms (mcg) to mg
1000 mcg per mg
amount in mcg divided by 1000 = amount per mg

Whoa! Not so fast. That’s 1.013 milligrams per pound. Now I didn’t grow up with the imperial system, so I had to think about that one. There are 2.2 pounds per kilogram, and there are 1000 grams in each kilogram. First multiply by 2.2 to find out how many milligrams are in a kilogram (1.013 x 2.2 = 2.23mg per kilogram) and then divide by 1000 to find out how many mg are in a gram. It turns out, there are 0.00223 mg/g.

Conversion Factor for Kilograms (kg) to Grams (g)
1000 grams per kg
Amount in a kg divided by 1000 = amount per g

Conversion Factor for Milligrams per Pound to mg/g
mg/lb X 2.2 and divide by 1000 = mg/g
or……. mg/lb X 0.0022 = mg/g

Thiamine (Vitamin B1) is already in mg…thank you very much!! However, it is also listed per pound, so as we learned above, multiply by 2.2 and divide by 1000. You can fill in Thiamine on your spreadsheet as 2.18mg/g.

You can then just repeat this process for everything listed on the label.

There are a few conversions that I haven’t included here. International Units (iu) are frequently used as a unit of measure for vitamins, medications, hormones, and other biologically active substances. These are different for every form of vitamin as they include a measurement of effectiveness or biological activity. I have to look the conversion factors up every time I have to use them, and the best place to find them is on Google. So you don’t have to, here are a few of the main ones.

NUTRIENTAMOUNT IN 1 IUAMOUNT IN 1000 IU (IU OR KIU)
Vitamin A (as Retinol)0.3 mcg300mg
Vitamin A (as Beta-carotene)3.6 mcg3600mg
Vitamin C50 mcg5000mg
Vitamin D0.025 mcg25mg
Vitamin E0.67 mcg670mg

Convert the contents per kg, L, g, oz, or pound to the content per dose.

.If you have converted the contents to mg/g and the dose is in grams, just multiply your quantity in mg/g by the dose. If you have converted to mg/kg, then multiply your quantity by the dose and divide by 1000. (There are 1000 grams per kg).

We have already calculated the contents in mg per g, so we just have to work out how many grams are in our dose and multiply by that number. In this example, there are 68 grams (1 full syringe) per dose.

Arginine = 3.1mg/g x 68 g = 210.8mg per dose syringeIron = 3.5mg/g x 68 g = 238 mg per dose syringeVitamin B12 = 0.00223mg/g x 68g = 0.152 mg per dose syringeVitamin B1 (Thiamine) = 2.18mg/g x 68g = 148.24mg per dose syringe.

Select Language